An Experimental Study on Vision-based Multiple Target Tracking
نویسندگان
چکیده
Multiple target tracking has been an interested topic of research for vision-based traffic monitoring application because of its importance in associating multiple detected vehicles from consecutive frames of video. Before tracking multiple vehicles across frames, target detection algorithm, such as background subtraction is responsible for capturing the position of moving target in every frame. Tracking algorithm uses the measurements from the detection stage to relate the moving targets from previous frame with the current frame. Due to the limitation of performance in the target detection algorithm, it is not reliable to solely depend on the measurements computed from the detection stage. Thus, Kalman filter model has been adopted to compensate the fluctuation and missing measurements whenever the detection stage fails. The missing measurements are predicted based on the center position of vehicle and velocity estimation from the displacement of vehicle. Experimental study has been conducted on the vehicle tracking at road junction. The results showed that Kalman filter model assure the continuous tracking of multiple targets even though there are several lost measurements. Index Terms – Kalman filter, vehicle tracking.
منابع مشابه
A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملMultiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملQuadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کاملParameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm
In this paper, the uncertain dynamic parameters of an experimental target tracker robot are identified through the application of genetic algorithm. The considered serial robot is a two-degree-of-freedom dynamic system with two revolute joints in which damping coefficients and inertia terms are uncertain. First, dynamic equations governing the robot system are extracted and then, simulated nume...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014